
Lab 05 - I/O Monitoring (Linux)

“Every thing is a file”, is a very famous Linux philosophy. There is a reason for this philosophy.

It's because, Linux operating system considers and works with most of its devices, by the same

way a file is opened or closed.

 Block devices (Hard-disks, Compact Disk, Floppy, Flash Memory)

 Character devices or serial devices (Mouse, keyboard)

 Network Devices

Objectives

 Offer an introduction to I/O monitoring.

 Get you acquainted with a few linux standard monitoring tools and their outputs, for

monitoring the impact of the I/Os on the system.

 Gives an intuition to be able to compare two relatively similar systems, but I/O

different.

Contents

Tasks

 01. [10p] Rotational delay - IOPS calculations

 02. [10p] Iostat

 03. [10p] Iotop

 04. [20p] Monitor I/O with vmstat and iostat

 05. [20p] Multitool Comparison

 06. [30p] RAM disk

 07. [10p] Feedback

Introduction

Disk I/O subsystems are the slowest part of any Linux system. This is mainly due to their distance

from the CPU and for the old HDD the fact that disk requires physics to work (rotation and seek).

If the time taken to access disk as opposed to memory was converted into days and minutes, it is

the difference between 7 days and 7 minutes. As a result, it is essential that the Linux kernel

minimises the amount of I/O operations it generates on a disk.

The following subsections describe the different ways the kernel processes data I/O from disk to

memory and back.

01. Reading and Writing Data - Memory Pages

The Linux kernel breaks disk I/O into pages. The default page size on most Linux systems is 4K.

It reads and writes disk blocks in and out of memory in 4K page sizes. You can check the page

size of your system by using the time command in verbose mode and searching for the page size:

getconf PAGESIZE

02. Major and Minor Page Faults

Linux, like most UNIX systems, uses a virtual memory layer that maps into physical address

space. This mapping is “on-demand” in the sense that when a process starts, the kernel only maps

what is required. When an application starts, the kernel searches the CPU caches and then physical

https://ocw.cs.pub.ro/courses/ep/labs/03/contents/tasks/ex1
https://ocw.cs.pub.ro/courses/ep/labs/03/contents/tasks/ex2
https://ocw.cs.pub.ro/courses/ep/labs/03/contents/tasks/ex3
https://ocw.cs.pub.ro/courses/ep/labs/03/contents/tasks/ex4
https://ocw.cs.pub.ro/courses/ep/labs/03/contents/tasks/ex5
https://ocw.cs.pub.ro/courses/ep/labs/03/contents/tasks/ex6
https://ocw.cs.pub.ro/courses/ep/labs/03/contents/tasks/ex7

memory. If the data does not exist in either, the kernel issues a Major Page Fault (MPF). A MPF

is a request to the disk subsystem to retrieve pages of the disk and buffer them in RAM.

Once memory pages are mapped into the buffer cache, the kernel will attempt to use these pages

resulting in a Minor Page Fault (MnPF). A MnPF saves the kernel time by reusing a page in

memory as opposed to placing it back on the disk.

To find out how many MPF and MnPF occurred when an application starts, the time command

can be used:

/usr/bin/time –v evolution

As an alternative, a more elegant solution for a specific pid is:

ps -o min_flt,maj_flt ${pid}

03. The File Buffer Cache

The file buffer cache is used by the kernel to minimise MPFs and maximise MnPFs. As a

system generates I/O over time, this buffer cache will continue to grow as the system will leave

these pages in memory until memory gets low and the kernel needs to “free” some of these pages

for other uses. The result is that many system administrators see low amounts of free memory and

become concerned when in reality, the system is just making good use of its caches

04. Types of Memory Pages

There are 3 types of memory pages in the Linux kernel:

 Read Pages – Pages of data read in via disk (MPF) that are read only and backed

on disk. These pages exist in the Buffer Cache and include static files, binaries,

and libraries that do not change. The Kernel will continue to page these into

memory as it needs them. If the system becomes short on memory, the kernel will

“steal” these pages and place them back on the free list causing an application to

have to MPF to bring them back in.

 Dirty Pages – Pages of data that have been modified by the kernel while in

memory. These pages need to be synced back to disk at some point by the pdflush

daemon. In the event of a memory shortage, kswapd (along with pdflush) will write

these pages to disk in order to make room in memory.

 Anonymous Pages – Pages of data that do belong to a process, but do not have

any file or backing store associated with them. They can't be synchronised back to

disk. In the event of a memory shortage, kswapd writes these to the swap device

as temporary storage until more RAM is free (“swapping” pages).

05. Writing Data Pages Back to Disk

Applications themselves may choose to write dirty pages back to disk immediately using

the fsync() or sync() system calls. These system calls issue a direct request to the I/O scheduler.

If an application does not invoke these system calls, the pdflush kernel daemon runs at periodic

intervals and writes pages back to disk.

Monitoring I/O

Certain conditions occur on a system that may create I/O bottlenecks. These conditions may be

identified by using a standard set of system monitoring tools. These tools

include top, vmstat, iostat, and sar. There are some similarities between the outputs of these

commands, but for the most part, each offers a unique set of output that provides a different aspect

on performance. The following subsections describe conditions that cause I/O bottlenecks.

Calculating IOs Per Second

Every I/O request to a disk takes a certain amount of time. This is due primarily to the fact that

a disk must spin and a head must seek. The spinning of a disk is often referred to as “rotational

delay” (RD) and the moving of the head as a “disk seek” (DS). The time it takes for each I/O

request is calculated by adding DS and RD. A disk's RD is fixed based on the RPM of the drive.

An RD is considered half a revolution around a disk.

Each time an application issues an I/O, it takes an average of 8MS to service that I/O on a 10K

RPM disk. Since this is a fixed time, it is imperative that the disk be as efficient as possible with

the time it will spend reading and writing to the disk. The amount of I/O requests is often measured

in I/Os Per Second (IOPS). The 10K RPM disk has the ability to push 120 to 150 (burst) IOPS. To

measure the effectiveness of IOPS, divide the amount of IOPS by the amount of data read or

written for each I/O.

Random vs Sequential I/O

The relevance of KB per I/O depends on the workload of the system. There are two different types

of workload categories on a system: sequential and random.

Sequential I/O - The iostat command provides information on IOPS and the amount of data

processed during each I/O. Use the –x switch with iostat (iostat –x 1). Sequential

workloads require large amounts of data to be read sequentially and at once. These include

applications such as enterprise databases executing large queries and streaming media services

capturing data. With sequential workloads, the KB per I/O ratio should be high. Sequential

workload performance relies on the ability to move large amounts of data as fast as possible. If

each I/O costs time, it is imperative to get as much data out of that I/O as possible.

Random I/O - Random access workloads do not depend as much on size of data. They depend

primarily on the amount of IOPS a disk can push. Web and mail servers are examples of random

access workloads. The I/O requests are rather small. Random access workload relies on how many

requests can be processed at once. Therefore, the amount of IOPS the disk can push becomes

crucial.

When Virtual Memory Kills I/O

If the system does not have enough RAM to accommodate all requests, it must start to use

the SWAP device. As file system I/Os, writes to the SWAP device are just as costly. If the system

is extremely deprived of RAM, it is possible that it will create a paging storm to the SWAP disk.

If the SWAP device is on the same file system as the data trying to be accessed, the system will

enter into contention for the I/O paths. This will cause a complete performance breakdown on

the system. If pages can't be read or written to disk, they will stay in RAM longer. If they stay in

RAM longer, the kernel will need to free the RAM. The problem is that the I/O channels are

so clogged that nothing can be done. This inevitably leads to a kernel panic and crash of the

system.

The following vmstat output demonstrates a system under memory distress. It is writing data out

to the swap device:

The previous output demonstrates a large amount of read requests into memory (bi). The requests

are so many that the system is short on memory (free). This is causing the system to send blocks

to the swap device (so) and the size of swap keeps growing (swpd). Also notice a large percentage

of WIO time (wa). This indicates that the CPU is starting to slow down because of I/O requests.

Furthermore, id represents the time spent idle and it is included in wa

To see the effect the swapping to disk is having on the system, check the swap partition on the

drive using iostat.

Both the swap device (/dev/sda1) and the file system device (/dev/sda3) are contending for I/O.

Both have high amounts of write requests per second (w/s) and high wait time (await) to low

service time ratios (svctm). This indicates that there is contention between the two partitions,

causing both to underperform.

Takeaways

 Any time the CPU is waiting on I/O, the disks are overloaded.

 Calculate the amount of IOPS your disks can sustain.

 Determine whether your applications require random or sequential disk access.

 Monitor slow disks by comparing wait times and service times.

 Monitor the swap and file system partitions to make sure that virtual memory is

not contending for filesystem I/O.

Tasks

01. [10p] Rotational delay - IOPS calculations

Every disk in your storage system has a maximum theoretical IOPS value that is based on a

formula. Disk performance and IOPS is based on three key factors:

 Rotational speed. Measured in RPM, mostly 7,200, 10,000 or 15,000 RPM. A

higher rotational speed is associated with a higher-performing disk.

 Average latency. The time it takes for the sector of the disk being accessed to

rotate into position under a read/write head.

 Average seek time. The time (in ms) it takes for the hard drive’s read/write head

to position itself over the track being read or written.

 Average IOPS: Divide 1 by the sum of the average latency in ms and the average

seek time in ms (1 / (average latency in ms + average seek time in ms).

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep2_poz1.png?id=ep:labs:03
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep2_poz2.png?id=ep:labs:03

To calculate the IOPS range divide 1 by the sum of the average latency in ms and the average

seek time in ms. The formula is:

average IOPS = 1 / (average latency in ms + average seek time in ms).

Let's calculate the Rotational Delay - RD for a 10K RPM drive:

 Divide 10000 RPM by 60 seconds: 10000/60 = 166 RPS

 Convert 1 of 166 to decimal: 1/166 = 0.006 seconds per Rotation

 Multiply the seconds per rotation by 1000 milliseconds (6 MS per rotation).

 Divide the total in half (RD is considered half a revolution around a disk): 6/2 = 3

MS

 Add an average of 3 MS for seek time: 3 MS + 3 MS = 6 MS

 Add 2 MS for latency (internal transfer): 6 MS + 2 MS = 8 MS

 Divide 1000 MS by 8 MS per I/O: 1000/8 = 125 IOPS

[10p] Task A - Calculate rotational delay

Calculate the rotational delay (RD) for a 5400 RPM drive.

02. [10p] Iostat

Parameteres for iostat:

 -x for extended statistics

 -d to display device stastistics only

 -m for displaying r/w in MB/s

$ iostat -xdm

Use iostat with -p for specific device statistics:

$ iostat -xdm -p sda

[10p] Task A - Monitoring the behaviour

 Run iostat -x 1 5.

 Considering the last two outputs provided by the previous command,

calculate the efficiency of IOPS for each of them. Does the amount of data

written per I/O increase or decrease?

How to do:

 Divide the kilobytes read (rkB/s) and written (wkB/s) per second by the reads

per second (r/s) and the writes per second (w/s).

 If you happen to have quite a few loop devices in your iostat output, find out

what they are exactly:

$ df -kh /dev/loop*

03. [10p] Iotop

https://en.wikipedia.org/wiki/Loop_device

Iotop is an utility similar to top command, that interfaces with the kernel to provide per-

thread/process I/O usage statistics.

Debian/Ubuntu Linux install iotop

$ sudo apt-get install iotop

How to use iotop command

$ sudo iotop OR $ iotop

Supported options by iotop command:

Options Description

–version show program’s version number and exit

-h, –help show this help message and exit

-o, –only only show processes or threads actually doing I/O

-b, –batch non-interactive mode

-n NUM, –iter=NUM number of iterations before ending [infinite]

-d SEC, –delay=SEC delay between iterations [1 second]

-p PID, –pid=PID processes/threads to monitor [all]

-u USER, –user=USER users to monitor [all]

-P, –processes only show processes, not all threads

-a, –accumulated show accumulated I/O instead of bandwidth

-k, –kilobytes use kilobytes instead of a human friendly unit

-t, –time add a timestamp on each line (implies –batch)

-q, –quiet suppress some lines of header (implies –batch)

[10p] Task A - Monitoring the behaviour

 Run iotop (install it if you do not already have it) in a separate shell showing

only processes or threads actually doing I/O.

 Inspect the script code (dummy.sh) to see what it does.

 Monitor the behaviour of the system with iotop while running the script.

 Identify the PID and PPID of the process running the dummy script and kill the

process using command line from another shell (sending SIGINT signal to both

parent & child processes).

 Hint - How to get parent PID of a given process in GNU/Linux from command

line?

04. [20p] Monitor I/O with vmstat and iostat

We said in the beginning that the disk I/O subsystems are the slowest part of any system. This is

why the I/O monitoring is so important, maximizing the performance of the slowest part of a

system resulting in an improvement of the performance of the entire system.

https://ocw.cs.pub.ro/courses/_media/ep/laboratoare/dummy.sh
https://superuser.com/questions/150117/how-to-get-parent-pid-of-a-given-process-in-gnu-linux-from-command-line
https://superuser.com/questions/150117/how-to-get-parent-pid-of-a-given-process-in-gnu-linux-from-command-line

[10p] Task A - Script

Write a script that reads the data into memory and generates a text file 500 times larger, by

concatenating the contents of the following novel olivertwist.txt to itself.

[10p] Task B - Monitoring behaviour

Now we want to analyze what is happening with the I/O subsystem during an expensive operation.

Monitor the behavior of the system while running your script using vmstat and iostat.

Understanding vmstat IO section:

 bi - column reports the number of blocks received (or “blocks in”) from a disk

per second.

 bo - column reports the number of blocks sent (“blocks out”) to a disk per

second.

05. [20p] Multitool Comparison

Now we will see in a slightly different approach, as for more special situations, a classic tool is

not enough as long as we want to have a more detailed analysis of the behavior of I/O mechanisms.

[10p] Task A - Different tool, same I/O

An example would be to create an infinite loop that copies endlessly (simulation of a demanding

process for a long time) a large file (use one of the files obtained previously).

Put the command below in a script:

$ while true; do cp original_file1 copied_file2; done

Use several special monitoring tools for I/O to investigate the state of the system.

Choose 3-4 from here: https://www.golinuxcloud.com/monitor-disk-io-performance-statistics-

linux/

[10p] Task B - Plot of Comparison

Plot a graph with the results obtained with iostat, iotop and one of the previously chosen tools.

Interpret the graph and the values obtained using those tools.

 basic plot

 the values used should represent the same metric (eg: kb written per second)

 you can take the values manually or automatically

 standardize the values (kb/s)

 preferably use the matplotlib module in python

Fill the data you obtained into the python3 script in plot.zip.

Make sure you have python3 and python3-matplotlib installed.

06. [30p] RAM disk

Linux allows you to use part of your RAM as a block device, viewing it as a hard disk partition.

The advantage of using a RAM disk is the extremely low latency (even when compared to SSDs).

The disadvantage is that all contents will be lost after a reboot.

There are two main types of RAM disks:

https://ocw.cs.pub.ro/courses/_media/ep/labs/olivertwist.txt
https://www.golinuxcloud.com/monitor-disk-io-performance-statistics-linux/
https://www.golinuxcloud.com/monitor-disk-io-performance-statistics-linux/
https://ocw.cs.pub.ro/courses/_media/ep/labs/03/contents/tasks/plot.zip

 ramfs - cannot be limited in size and will continue to grow until you run out of

RAM. Its size can not be determined precisely with tools like df. Instead, you have

to estimate it by looking at the “cached” entry from free's output.

 tmpfs - newer than ramfs. Can set a size limit. Behaves exactly like a hard disk

partition but can't be monitored through conventional means (i.e. iostat). Size can

be precisely estimated using df.

[15p] Task A - Create RAM Disk

Before getting started, let's find out the file system that our root partition uses. Run the following

command (T - print file system type, h - human readable):

$ df -Th

The result should look like this:

Filesystem Type Size Used Avail Use% Mounted on

udev devtmpfs 1.1G 0 1.1G 0% /dev

tmpfs tmpfs 214M 3.8M 210M 2% /run

/dev/sda1 ext4 218G 4.1G 202G 2% / <- root partition

tmpfs tmpfs 1.1G 252K 1.1G 1% /dev/shm

tmpfs tmpfs 5.0M 4.0K 5.0M 1% /run/lock

tmpfs tmpfs 1.1G 0 1.1G 0% /sys/fs/cgroup

/dev/sda2 ext4 923M 73M 787M 9% /boot

/dev/sda4 ext4 266G 62M 253G 1% /home

From the results, we will assume in the following commands that the file system is ext4. If it's not

your case, just replace with what you have:

$ sudo mkdir /mnt/ramdisk

$ sudo mount -t tmpfs -o size=1G ext4 /mnt/ramdisk

If you want the RAM disk to persist after a reboot, you can add the following line to /etc/fstab.

Remember that its contents will still be lost.

tmpfs /mnt/ramdisk tmpfs rw,nodev,nosuid,size=1G 0 0

That's it. We just created a 1Gb tmpfs ramdisk with an ext4 file system and mounted it

at /mnt/ramdisk. Use df again to check this yourself.

[15p] Task B - Pipe View & RAM Disk

As we mentioned before, you can't get I/O statistics regarding tmpfs since it is not a real partition.

One solution to this problem is using pv to monitor the progress of data transfer through a pipe.

This is a valid approach only if we consider the disk I/O being the bottleneck.

Next, we will generate 512Mb of random data and place it in /mnt/ramdisk/file first and then

in /home/student/file. The transfer is done using dd with 2048-byte blocks.

$ pv /dev/urandom | dd of=/mnt/ramdisk/rand bs=2048 count=$((512 * 1024 * 1024 / 2048))

$ pv /dev/urandom | dd of=/home/student/rand bs=2048 count=$((512 * 1024 * 1024 / 2048))

Look at the elapsed time and average transfer speed. What conclusion can you draw?

	Lab 05 - I/O Monitoring (Linux)
	Objectives
	Contents
	Introduction
	01. Reading and Writing Data - Memory Pages
	02. Major and Minor Page Faults
	03. The File Buffer Cache
	04. Types of Memory Pages
	05. Writing Data Pages Back to Disk

	Monitoring I/O
	Calculating IOs Per Second
	Random vs Sequential I/O
	When Virtual Memory Kills I/O
	Takeaways

	Tasks
	01. [10p] Rotational delay - IOPS calculations
	[10p] Task A - Calculate rotational delay

	02. [10p] Iostat
	[10p] Task A - Monitoring the behaviour

	03. [10p] Iotop
	[10p] Task A - Monitoring the behaviour

	04. [20p] Monitor I/O with vmstat and iostat
	[10p] Task A - Script
	[10p] Task B - Monitoring behaviour

	05. [20p] Multitool Comparison
	[10p] Task A - Different tool, same I/O
	[10p] Task B - Plot of Comparison

	06. [30p] RAM disk
	[15p] Task A - Create RAM Disk
	[15p] Task B - Pipe View & RAM Disk

